
Tunnelling through asymmetric parabolic potential barriers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5243

(http://iopscience.iop.org/0305-4470/30/14/031)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5243–5244. Printed in the UK PII: S0305-4470(97)83431-2

COMMENT

Tunnelling through asymmetric parabolic potential barriers
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Abstract. An exact transmission coefficient for the asymmetric parabolic barrier potential,
i.e. V (x) = [V1 − 1

2mω1
2x2]2(−x) + [V2 − 1

2mω2
2x2]2(x), where2(x 6 0) = 0 and

2(x > 0) = 1, is rederived.

The asymmetric parabolic barrier (APB) potential is defined as

V (x) = [V1− 1
2mω1

2x2]2(−x)+ [V2− 1
2mω2

2x2]2(x) (1)

where2(x 6 0) = 0 and2(x > 0) = 1. This potential has earlier [1] been referred to
as an inverted biharmonic oscillator potential, and an analytic transmission coefficient has
been proposed. This model barrier is found suitable to parametrize nuclear fission barriers
[2] and also bears a pedagogical advantage [3].

It can be checked that the acclaimed transmission coefficient [1, 2] entails the following
shortcomings: (i) it does not degenerate toT (E) of the parabolic/harmonic barrier when
(ω1 = ω2); (ii) it does not yield the classical limit, i.e.Limit

h̄→0T (E) = 2(E−V0); (iii) it does
not yield the high-energy limit, i.e.T (E → ∞) = 1; and also (iv) it does not satisfy the
unitarity, i.e.T (E) 6 1. Although we found that a minorad-hoccorrection (squaring of the
square bracket in equation (5)) enablesT (E) in [1, 2] to meet thesenecessaryconditions
successfully, yet the question of the correctness ofT (E) remained. Such thoughts have
indeed set the ground for a rederivation ofT (E) for the biharmonic barrier. Thus, in this
comment we intend to report the correct expression forT (E) for the potential given in
equation (1).

By definingα1 = (V1−E)/h̄ω1, α2 = (V2−E)/h̄ω2 and an asymmetry parameter,η =√
ω2/ω1, we employ parabolic cylindrical functions [4],E(α, x), to find the transmission

coefficient as

T (E) = 4η

|E′(α1, 0)E(α2, 0)+ ηE(α1, 0)E′(α2, 0)|2 . (2)

The functionE(a,0) is analytically expressed asE(a,0) = 2−3/4[k−1/2 + ik1/2]
√
f (a).

Similarly, we haveE′(a, 0) = −2−1/4[k−1/2− ik1/2]/
√
f (a). The functionf (a) is defined

as

f (a) =
∣∣∣∣0(1/4+ ia/2)

0(3/4+ ia/2)

∣∣∣∣ (3)

such thatf (−a) = f (a), f (0) = 2.958 71, f (±∞) = 0 andk = √1+ e2πa −eπa [4]. The
transmission coefficient,T (E), finally simplifies to

T (E) = 1
1
4

√
1+ e2πα1

√
1+ e2πα2[η(f1/f2)+ (1/η)(f2/f1)] + 1

2[eπα1 eπα2 + 1]
(4)
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wheref1 = f (α1) andf2 = f (α2). Now let us rewrite the transmission coefficient of [1, 2]
in a similar notation for the sake of comparison by denoting it asT ′(E):

T ′(E) =
√
ω1ω2

1
4

√
1+ e2πα1

√
1+ e2πα2[

√
ω1
√
f2/f1+√ω2

√
f1/f2]

. (5)

Note the differences between (4) and (5).
Let us use Limit

|y|→∞|x + iy| = √2π |y|x−1/2 e−π |y|/2 to appreciate the largeα behaviour

of f (α). We obtain an important asymptotic expression asf (α) ∼ |α/2|−1/2. Using this
we find two more interesting transmission coefficients: whenω2 → 0, the APB potential
presents a semi-infinite parabolic step barrier and we use the asymptotic value off (α2) in
equation (4) to obtain

T step(E) = 1
1
4

√
1+ e2πα1[f1/δ + δ/f1] + 1

2

2(E − V2) (6)

whereδ = √|V2− E|/2h̄ω1. Note the step function above. Next, whenV2 = 0 andω2→ 0
the incident particle encounters half-a-parabolic barrier, since the potential forx > 0 is zero,
and equation (6) yields

T half(E) = 1
1
4

√
1+ e2πα1[f1/γ + γ /f1] + 1

2

(7)

whereγ = √E/2h̄ω1. Note the disappearance of the step function above.
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