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Tunnelling through asymmetric parabolic potential barriers
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Abstract. An exact transmission coefficient for the asymmetric parabolic barrier potential,
ie. V) = [Vi — Imwi2x?O(—x) + [V2 — 3mwz2x?]0(x), where®(x < 0) = 0 and
®(x > 0) =1, is rederived.

The asymmetric parabolic barrier (APB) potential is defined as

Vx)=[V1— %mw12x2]®(—x) +[Ve— %mwzzxz](@(x) Q)
where®(x < 0) = 0 and®(x > 0) = 1. This potential has earlier [1] been referred to
as an inverted biharmonic oscillator potential, and an analytic transmission coefficient has
been proposed. This model barrier is found suitable to parametrize nuclear fission barriers
[2] and also bears a pedagogical advantage [3].

It can be checked that the acclaimed transmission coefficient [1, 2] entails the following
shortcomings: (i) it does not degenerateTtoE) of the parabolic/harmonic barrier when
(w1 = wy); (ii) it does not yield the classical limit, i.%‘ng(E) = O(E — Vp); (iii) it does
not yield the high-energy limit, i.eT(E — oo) = 1; and also (iv) it does not satisfy the
unitarity, i.e.T(E) < 1. Although we found that a min@d-hoccorrection (squaring of the
square bracket in equation (5)) enablegF) in [1, 2] to meet thesaecessaryconditions
successfully, yet the question of the correctnesg @f) remained. Such thoughts have
indeed set the ground for a rederivationTfE) for the biharmonic barrier. Thus, in this
comment we intend to report the correct expressionTfoE) for the potential given in
equation (1).

By definingay = (V1 — E) /hwy, az = (V2 — E) /hw, and an asymmetry parameter=
Jw2/w1, we employ parabolic cylindrical functions [4F («, x), to find the transmission
coefficient as

o @
|E’ (a1, 0)E (a2, 0) + nE (g, 0)E’ (a0, 0)|2°
The function E(a, 0) is analytically expressed aB(a,0) = 2-34[k~Y2 + ikY?]/f ().
Similarly, we haveE’(a, 0) = —2~Y4[k=Y2 —ik*/2]// f(a). The functionf (a) is defined
as

T(E) =

@ — ‘1‘(1/4+ ia/2)

['(3/4+ia/2) )
such thatf (—a) = f(a), f(0) = 2.95871 f(+oo) = 0 andk = +/1+ €¥2 — " [4]. The
transmission coefficienf (E), finally simplifies to

1
T(E) =

4
WLt @1+ @n(fi/f) + U/ (fo/ ] + Sl eve + 1] @
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where f1 = f(a1) and f> = f(«2). Now let us rewrite the transmission coefficient of [1, 2]
in a similar notation for the sake of comparison by denoting iTa¥):

T'(E) = V@102 : (5)
Vit e+ el Jory/ fof fi + o2/ Fi/ o

Note the differences between (4) and (5).
Let us usele"I';o Ix +iy| = ~/27|y|*"Y2e7/2 to appreciate the large behaviour
of f(a). We obtain an important asymptotic expressionfas) ~ |a/2|~2. Using this
we find two more interesting transmission coefficients: when— 0, the APB potential
presents a semi-infinite parabolic step barrier and we use the asymptotic vafie,dfin

equation (4) to obtain

1
®
VIt el fi/s+ /] + 3
wheres = /|V, — E|/2hw;. Note the step function above. Next, whén= 0 andw, — 0

the incident particle encounters half-a-parabolic barrier, since the potentiakfdd is zero,
and equation (6) yields

TSRE) = (E — Vo) (6)

1
Vit e alfify +v/fil+3
wherey = /E/2hw;. Note the disappearance of the step function above.

T"(E) = )
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